
Software Engineering Lecture Notes WS 24/25

Igor Dimitrov

2024-10-14

Table of contents

Preface 5
Chapters . 5

1 Introduction to SE 6

2 Communication in a Project 7
2.0.1 Projects and Participants . 7
2.0.2 Contractual Relationship . 8
2.0.3 Team Organization . 8
2.0.4 Collaborative Coding . 8

3 Requirements Engineering 9
3.0.1 Communication with Users / Clients . 10
3.0.2 Usage Modelling . 10

3.0.2.1 Roles, Persona . 11
3.0.2.2 Tasks . 11
3.0.2.3 Domain Data . 12
3.0.2.4 Functions & UI-Structure (Interaction Level) 12
3.0.2.5 Design of System Functions and UI-Structure 13
3.0.2.6 GUI . 14

3.0.3 Documentation Quality . 15
3.0.4 Usability . 15
3.0.5 Quality Assurance with the Clients . 16

3.0.5.1 Acceptance Test . 16
3.0.5.2 Usability Test . 16

3.0.6 Quality requirements . 17
3.0.6.1 Motivation . 17
3.0.6.2 Quality Attributes . 17
3.0.6.3 Describing QR . 19
3.0.6.4 Testing QR . 19

3.0.7 Use Cases . 20
3.0.7.1 Description of a UC . 20
3.0.7.2 Use of System Tests . 21

3.0.8 RE Procedure - Method of RE . 21
3.0.8.1 Introduction . 21

2

3.0.8.2 Gathering Requirements . 22
3.0.8.3 Specifying Requirements . 22

4 Design 24
4.0.1 Introduction to Modelling . 24
4.0.2 4 + 1 Architectural View Model . 25
4.0.3 UML . 26

4.0.3.1 Structure Diagrams . 27
4.0.3.2 Behavior Diagrams . 27

4.0.4 Class Design with OOAD . 33
4.0.4.1 Design Principles: Cohesion and Coupling 34
4.0.4.2 OOAD . 35

4.0.5 Design Patterns . 40
4.0.5.1 Creational Patterns . 41
4.0.5.2 Structural Patterns . 43
4.0.5.3 Behavioral Patterns . 46

4.0.6 Rationales (Communication of Decisions) 47

5 Quality Assurance 49
5.0.1 Introduction . 49

5.0.1.1 Terms . 50
5.0.2 Testing . 50

5.0.2.1 Introduction . 50
5.0.2.2 Test-case Specification . 51
5.0.2.3 Component . 52
5.0.2.4 Black-box Component Testing 52
5.0.2.5 White-box Component Test . 54
5.0.2.6 Grey-box Testing: White-box + Black-Box 57
5.0.2.7 Class / Object Test . 57
5.0.2.8 System Test . 57
5.0.2.9 Integration Test . 58

5.0.3 Static Testing . 60
5.0.3.1 Static Analysis . 60
5.0.3.2 Metrics . 61
5.0.3.3 Inspection . 61

5.0.4 Analytical Quality Assurance at Large 64
5.0.4.1 Method of Analytical QA . 64
5.0.4.2 Principles of Analytical QA . 65

6 Evolution 66
6.0.1 Introduction . 66
6.0.2 Architecture . 67

6.0.2.1 Elements / levels of architectural design: 68

3

6.0.2.2 Tasks of Architectural Design 69
6.0.2.3 Modeling Architecture . 69
6.0.2.4 Architectural Patterns . 70

6.0.3 Reuse . 72
6.0.3.1 Frameworks . 73
6.0.3.2 Components (Component-Ware) 73
6.0.3.3 Service Oriented Architecture (SOA) 74
6.0.3.4 Microservices . 75
6.0.3.5 Cloud . 75
6.0.3.6 Product Lines . 75

6.0.4 Change Management and Further Development 75
6.0.4.1 Verfolgbarkeit / Traceability 76

6.0.5 DevOps & IT-Governance . 76
6.0.5.1 Software operation . 77
6.0.5.2 DevOps . 77
6.0.5.3 IT-Governance . 78

6.0.6 Re-engineering . 78
6.0.6.1 Reverse Engineering . 78
6.0.6.2 Legacy Systems . 79

7 SWE Process & Project Management 80
7.0.1 Intro . 80
7.0.2 Project Management . 80
7.0.3 SWE-Process models & methods . 82

7.0.3.1 Process Models . 82

4

Preface

Lecture notes for the course “Software Engineering” at Heidelberg University WS24/25.

Chapters

1. Introduction
2. Communication in a Project link
3. Requirements Engineering (Communication with the Users) link
4. Design (Communication with Developers) link
5. Quality Management link
6. Evolution link
7. SWE-Process (Summary and Project Management) link

5

1 Introduction to SE

Core goals of software engineering:

• quality: software fulfills the requirements ⇐ this
• users: software is useful for the users
• developers: it is easy to develop, maintain and modify the software
• cost / time: software can be implemented within the given cost & time constraints ⇒

project management

Main task categories of software engineering:

• Development:

– Determining the software context
– requirements engineering
– architecture
– detailed design
– implementation
– configuration management

• Quality management

– product: testing, inspection, metrics
– process: measurements, improvements

• Evolution:

– maintenance
– further development / modification
– re-engineering / change management

• Project management:

– team
– costs
– time / deadlines
– risks
– contractor / client

6

2 Communication in a Project

Following topics relate to and determine communication within a project:

1. Number of participants and their roles in the project
2. Type of the contractual relationship
3. Team Organization: The way developers communicate within the project
4. Collaborative Coding

2.0.1 Projects and Participants

terms relating to project and process:

• process:
• project
• process model:

characteristics of a project:

• limited time
• creator
• purpose
• client
• results
• means and tools
• organization and planning

participants:

• client
• user
• manufacturer

7

2.0.2 Contractual Relationship

project types:

• EP (Entwicklungsprojekt) -> development project
• AP (Auftragsprojekt) -> Commissioned Project
• EDP (EDV-Projekt, EDV = Elektronische Datenverarbeitung) -> IT Project
• SP (Systemprojekt) -> System Project

2.0.3 Team Organization

types of team organization:

• single person
• 2-person team
• anarchic team
• democratic team
• hierarchical team
• chief-programmer team
• agile team

types of secondary organization:

• functional
• project-based
• matrix

2.0.4 Collaborative Coding

• Pair programming
• Distributed development

8

3 Requirements Engineering

requirements engineering can be understood as corresponding to the communication with the
users / clients. Deals with the following topics

1. Introduction to communication with users/clients.

1. Clients and Requirements
2. Description and specification of requirements
3. Defining Requirements Engineering
4. Outcome of Requirements Engineering
5. Benefit of specification
6. Complexities of RE

2. Usage modelling / description

1. Introductory Example
2. Introduction
3. Tasks, Roles, Persona
4. Domain Data
5. Functions, UI-Structure
6. GUI

3. Documentation Quality

1. Introduction and Templates
2. Characteristics and style guide

4. Usability
5. Quality assurance with the client

1. acceptance test
2. usability test

6. Quality requirements

1. Motivation
2. Quality attributes
3. QR-description
4. QR-test

7. Use-cases (not relevant to the exam)

9

1. Description of Uses Cases
2. Use for system testing

8. RE procedure

1. Introduction
2. Gathering requirements
3. Specificying requirements

3.0.1 Communication with Users / Clients

• requirements engineering:

– collection of the requirements from the client
– specification / formalization of the requirements
– testing / examination of the requirements
– management of the requirements

• requirements engineering result:

– document:
∗ description using system functions

– prototype

• Advantages and Uses of Specification:

• Disadvantages of a missing specification

• Difficulties related to RE:

3.0.2 Usage Modelling

• Task-oriented Requirements Engineering:

– Task level: tasks, roles, persona
– Domain level: subtasks (as-is & to-be), domain data
– interaction level: system functions, ui-structure
– system level: gui, screen-structure (virtual window)

Roles, Persona, Tasks

10

3.0.2.1 Roles, Persona

UDC (User-centered design)

Roles and Persona

• User role:
• User profile:

How are personae described:

• name
• biographic facts: age, gender, etc
• knowledge and attitude with respect to the tasks and technology:
• needs: main use-cases in which the user wants to apply the software -> Tasks
• frustrations:
• ideal features:

3.0.2.2 Tasks

How tasks are described:

• Goals
• Decisions
• Causes
• Priority
• Execution profile (frequency, continuity, complexity)
• Precondition
• Info-in (input)
• Info-out (output)
• resources (means, participating roles)

sub-tasks:

Persona-task correspondence:

• needs <=> sub-tasks => combination of system-functions
• frustrations <=> problems in sub-tasks
• ideal features <=> ideas, system functions

11

3.0.2.3 Domain Data

Domain data explain the terms used in the task descriptions.

Goal: describe/model the entities of real world, including their relationships / associations to
each other, in order to understand the tasks.

• domain data describe entities that are relevant within the context of the sofwtare. They
correspond to the terms used in the task description => independent from the software.

• described with simple class diagrams => domain data diagram (no operations, no
aggregation, no inheritence, only associations)

• sometimes glossary is sufficient.

sometimes not sufficient, because there additional data necessary on the UI level => inter-
action data. (not relevant in our MMAP case)

3.0.2.4 Functions & UI-Structure (Interaction Level)

Goal: implementation of the User/Machine boundary with respect to the task descriptions.

consists of 2 parts:

1. System functions: which functions are provided by the system?
2. UI-Structure:

• in which context can the user call which functions,
• which data is available/visible in those contexts?
• how are functionalities divided among the sub-parts?

Warning

UI-Structure is not GUI-structure, i.e. the concrete layout is not yet determined.

3.0.2.4.1 System Functions

how is a system function described:

• name: nomenclature verb-object, describe what will be achieved on the user data (e.g. un-
linkMovie => movie will be unlinked)

• input:

– context (i.e. workspace) in which the SF accessible

12

• concrete input: data that is gathered during the interaction with the user. Such data is
not yet determined when the SF is first called on the GUI, but first provided by the user
during the interaction.

• output: changes of the UI
• description:
• exceptions: cancel/discard by the user
• rules:
• quality requirements:
• precondition:
• postcondition:

3.0.2.4.2 UI-Structure

Consists of

• workspaces:

– bundle related system functions and data similar to a class (but only from an
abstract user point of view. Actual structure in code can be completely different)

– only system functions that can be triggered by the user are listed

• navigation links between workspaces

UI-structure abstracts from a concrete screen-layout. Logical represents a logical view of the
interaction structure.

Important

UI-structure is created concurrently with the System functions, because their close inter-
relation. (Workspaces contain System functions and data)

3.0.2.5 Design of System Functions and UI-Structure

• how is the system function specification template filled in?
• how are ui-structure decision made concurrently to SF specifications?
• initial test considerations?

There’s still lots of wiggle room for specific design decisions.

TODO:

13

3.0.2.6 GUI

GUI= concrete layout of the UI:

• data representation
• function representation
• window structure
• dialogue description (how user controls the execution of functions)

Design principles:

• law of proximity
• law of closure
• law of good continuation
• law of similarity

Types of functions:

• semantic functions: actual data manipulation in the system, e.g. save, open, calculate
something etc

• help functions / auxillary functions: data manipulation on the screen, e.g. text size
• search
• navigation

How functions are represented:

• buttons
• checkbox
• menu-selection
• shortcut
• icon
• scroll-bar
• drag-and-drop

Views (Window / Screen): concrete version of Workspaces:

• how is data represented
• how are functions made available / represented

Documentation of a view: Virtual Window (Mock-up)

14

3.0.3 Documentation Quality

following topics relate to it:

• document templates
• features and sytle-guide

many documents exist:

• Software context-design:

– problem-description
– contract
– acceptance test plan

• Requirements Engineering:

– Client-requirements
– Usage test plan
– Software specification
– System test plan

• architectural specification:

– architectural specification / definition
– sub-system specification

• Detailed design:

– component specification
– integration test plan

• Implementation:

– Code
– Component test plan

Communication happens via / is facilitated by documents

3.0.4 Usability

The degree to which a product can be used efficiently and adequately for specific tasks / goals,
in a specific usage context:

• effectivity
• efficiency
• satisfaction

15

7 interaction (dialogue) principles :

• Task appropriateness: no unnecessary repetitive actions must be taken bythe user
• Self-descriptiveness: user knows what the actions achieve, what’s the input, output and

the systems response.
• Controllability: user can decide the order of the operations, can terminate the operation

and resume at any given moment without loss.
• Expectation-conformity: system is consistent, confirms to users real-life experience and

other software conventions
• Error tolerance: even at the hands of an incorrect input the intended result can be

achieved with minimum correction effort.
• User engagement: system must be appealing and inviting and provide users a positive

experience.
• Learnability: users are supported and guided during the learning of the software

3.0.5 Quality Assurance with the Clients

• verification: whether the software being built confirms to the specifications derived from
the requirements and whether the requierements documents meet quality standards

• validation: whether the specifications actually correspond to clients requirements ⇒:

– usability test
– acceptance test

3.0.5.1 Acceptance Test

• Tests whether the client accepts the system ⇒ validation.
• Uses system tests provided by the client
• includes particularly also usability tests.
• tests are carried out in the production environment (live system where the software is

fully deployed and used by the clients)

3.0.5.2 Usability Test

A representative group of users from the target demographic of the product take part in the
test to determine to what extent the usability criteria is met.

Consists of:

• users
• observers

16

how:

• develop a test plan:

– goal
– description of the problem
– description of the users
– test design
– list of tasks
– test environment
– evaluation criteria

• prepare the test:

– recruiting a representative group
– recruiting observers
– distribution and review of the test plan with the participants
– prepare scenarios
– prepare surveys: backgroung, pretest, posttest
– prepare test env

• execute the test:
• analyse the results

3.0.6 Quality requirements

3.0.6.1 Motivation

• functional requirements ⇒ what?

– tasks
– system functions
– gui

• non-functional requirements (NFR) ⇒ how good?

– Quality of the system

• QR = quality requirements: describe product considerations
• QA = quality attributes

3.0.6.2 Quality Attributes

QA describe various types of software quality.

Categories:

17

• Quality in Use: Direct validation with the users

– Beneficialness: how well are users supported
∗ usability
∗ accessibility
∗ suitability

– freedom from risk: general impact
– acceptability (how good is the system from the point of view of the user)

∗ support experience
∗ trustworthiness
∗ compliance (regulations, laws)

• Software Product Quality: verification (internally), validation (externally), continuously
during the whole development process

– functional stability
∗ functional completeness
∗ functional correctness
∗ functional appropriateness (helpful)

– performance efficiency
∗ time behavior
∗ resource utilization
∗ capacity

– compatibility
∗ co-existence with other software
∗ interoperability

– interaction capability (usability)
∗ recognizability
∗ learnability
∗ operability
∗ user error protection
∗ user engagement
∗ inclusivity
∗ user assistance

– reliability
∗ faultlessness
∗ availability
∗ fault tolerance
∗ recoverability

– security
∗ confidentiality

18

∗ integrity
∗ non-repudiation
∗ accountability
∗ authenticity

– maintainability
∗ modularity
∗ reusability
∗ analysability
∗ modifiability
∗ testability

– flexibility
∗ adaptability
∗ scalability
∗ installability
∗ replaceability

– safety
∗ operational constraint
∗ risk identification
∗ fail safe
∗ hazard warning
∗ safe integration

3.0.6.3 Describing QR

• QR should be made as measurable and as concrete as possible.
• QR are defined in parallel with the FR with as much detail as possible, for all levels:

– Tasks
– Domain data
– Functions
– GUI

3.0.6.4 Testing QR

• Different QA categories require different testing methods.
• Usually only possible at the level of system testing, especially acceptance testing.
• Usually conducted by acting out scenarios

19

3.0.7 Use Cases

So far we described the requirements via:

• (Sub)-Tasks
• Domain Data
• Roles / Persona
• System functions
• Interaction data
• UI Structure

At the system level this is further refined via:

• concrete views
• interaction models

But this is only an indirect description of users interaction with the system.

Use Cases describe the specifics of users interactions with the system, specifically the partic-
ular execution sequence of system function to complete a certain (sub-)task. Thus, they are
derived from Tasks

use cases vs TORE:

• use cases cover only a subset of TORE. Particularly

– No domain data model
– No UI-Structure (which SF & Data are available in which view, how do you navigate

between views)

• UC integrate SF within the execution flow, in TORE SF are contained in the subtask
description (although without the execution flow)

3.0.7.1 Description of a UC

Example: manage movie or performer ratings in MMAPP.

• Name: Manage Rating
• Actor: Person
• Goal: to rate movies or performers
• Precondition: at least one movie exists. Depending on the current state wither A1 or

A2 is the starting point:

– Flow of events:
∗ Actor: A1) W0.1 Movie Master View … System: System shows the
∗ …

20

– Rules:
– Quality requirements:
– Data, System Functions:
– Postcondition:

3.0.7.2 Use of System Tests

Scenario vs UC:

• Scenario: a specific interaction flow
• UC: an abstract description of a set of scenarios

A choice of a typical set of scenarios can be used as a template when creating a UC. On the
other hand a UC can be validated by a subsequent creation of a set of test scenarios.

What is a typical flow?

• normal flow
• coverage of branches / exceptions
• dealing with large input (stress test)
• dealing with complex execution flows (many functions are called)

3.0.8 RE Procedure - Method of RE

So far we only concerned ourselves with describing the requirements. Here we explain how to
gather and manage them.

3.0.8.1 Introduction

Stakeholder (client) requirements: the requirements stipulated by the client to achieve a certain
goal or solve a certain problem.

1. requirements are gathered
2. requirements are formulated / formalized in the specification
3. specifications are validated and verified
4. specifications are translated into a design
5. the design is implemented
6. the implementation is tested
7. the implementation is deployed to the clients

21

3.0.8.2 Gathering Requirements

what information should be gathered:

• previous method to solve the problem
• problems related to the previous method
• goals for the new system / method to solve the problem
• success criteria
• rough system architecture (how many components, distribution)
• realistic solutions
• consequences and risks

how it is gathered:

• observation
• user surveying
• ethnographic studies
• use cases
• workshops
• object oriented analysis
• entity relationship diagrams
• conceptual modelling
• data flow diagram
• formal specification
• prototypes
• observations of other products
• literature research
• studying standard software

requirements can also be gathered via user feedback

3.0.8.3 Specifying Requirements

contents and types of requirement specification:

• functional requirements: how should the software support the users?
• non-functional requirements:

– quality requirements: how well should the software support the users?
– edge conditions

• rationales: reasoning behind the decisions?

22

requirement specification is textual as well as schematic (UML, ER etc)

There are two types of requirements:

• client (user) requirements
• system (developer) requirements: requirements from the point of view of the developer

with more technical detail.

Usually two different documents are created.

TORE again:

1. task level:

• tasks
• roles, persona

2. domain level:

• sub-tasks
• domain data

3. interaction level:

• system functions
• interaction
• ui-structure

4. system-level: GUI

• screen-structure (virtual window)

above levels can be categorized as follows:

• 1, 2: client requirements
• 3, 4: system requirements

Two different specification documents:

• lastenheft (client specification document)
• pflichtenheft (developer specification document)

23

4 Design

Design can be understood as communication with and within the developers.

Goal: The software system can be further developed efficiently, and is easy to understand for
new developers.

Belongs to the development and specifically detailed design category of software develop-
ment.

Deals with the following topics:

1. Introduction to Modelling
2. Class diagrams
3. Interaction diagrams
4. State Diagrams

1. UML State diagrams
2. Dialog models

5. Class design with OOAD

1. OOAD introduction
2. OOAD: Analysis Class diagram
3. OOAD: Design Class Diagram

6. Design Patterns

1. Introduction
2. Creational patterns
3. Structural patterns
4. Behavioral patterns

7. Rationales (Communication of decisions)
8. Summary of modelling techniques

4.0.1 Introduction to Modelling

A given team (approx 7 people) developes an understanding of the structure of the Software
System, albeit without using code, since code is too detailed and is not conducive to under-
standing the overall structure of the software.

24

Instead an appropriate abstraction level is necessary ⇒ modelling languages.

Model: Abstraction of a system, expressed in a formal language / notation where irrelevant
details are omitted.

Characteristics of models:

• mapping
• incompleteness
• pragmatic (a model is created with a certain purpose / goal)

Characteristics of a formal notation:

• syntax
• semantics
• pragmatics

– analysis techniques: type checking, consistency checks
– simulation techniques
– transformation techniques (refactoring, (algebraic) simplification)
– generation techniques

A notation is a ‘theory’ that enables to reason about and manipulate representations of objects
from the domain.

4.0.2 4 + 1 Architectural View Model

4 different viewpoints representing different stakeholders:

1. Logical View → End-users: functionality that the system provides to the end-users /
clients.

UML diagrams:

• class diagrams
• state diagrams

2. Process View: dynamic aspects of the system, description of the system processes, how
they communicate, run-time behavior of the system: concurrency, distribution, perfor-
mance, scalability, etc.

UML diagrams:

• sequence diagram
• communication diagram
• activity diagram

25

3. Development (Implementation) View → Programmers: system from program-
mers’ perspective, concerned with software management.

UML diagrams:

• package diagram
• component diagram

4. Physical View → System-engineer: topology of the software components on the
physical layer as well as the physical connection between these components.

UML diagrams:

• deployment diagram

• (+1): Scenarios / Use Case View:

– Architecture is described using a small set of use cases or scenarios
– Scenarios are Sequences of interactions between objects and between processes.
– used to identify architectural elements and to illustrate and validate the architec-

tural design.
– used as a starting point for tests of an architecture prototype

4.0.3 UML

UML diagram categories:

• Structure diagrams → statics of the system:

– class
– object
– component
– deployment
– package
– composite structure

• Behavior diagrams → dynamics of the system

– interaction:
∗ sequence
∗ communication
∗ interaction overview
∗ timing

– Use Case
– Dialgue Model / Activity
– State

26

In the lecture especially:

• class diagrams
• object diagrams
• interaction diagrams
• state diagrams
• Dialogue Model / Activity Diagrams

4.0.3.1 Structure Diagrams

• Design:

– Class Diagram (analysis and design) (logical view)
– Object diagram (special cases) (logical view)
– package diagram (bundles of classes) (development view)

• Architecture:

– compositional structure diagram
– logical component diagram (internal and external view)
– distribution diagram (over the physical components)

4.0.3.1.1 Class Diagrams

important components of class diagrams:

• classes (objects)
• associations between classes:

– aggregation
– komposition

• attributes
• operations
• generalization / specialization relationship (inheritance)
• interfaces: a view on a class (a contract)

4.0.3.2 Behavior Diagrams

• Flows:

– Use case diagram (overview of the use case)
– Dialogue model / activity diagram (sequences of activities)
– state diagram (sequences of states)

27

• interaction:

– sequence diagram (sequence of messages)
– communication diagram (focus on a component)
– time diagram (communication between automata)
– interaction overview diagram (interaction of multiple interactions)

4.0.3.2.1 State Diagrams

UML extension of traditional state diagram aims to overcome some of the limitations FSMs.
Thus UML state machines is an extension to the traditional mathematical FSMs.

specific to UML:

• hierarchically nested states
• orthogonal regions
• extended notion of actions
• characteristics of both Mealy and Moore machines:

– Mealy: actions that depend both on the state and the triggering event
– Moore: entry and exit action (only associated with states, not transitions)

Many software systems are event-driven (also called reactive):

• mouse click
• button press
• time tick
• arrival of a data packet
• …

Software systems react to events by taking actions and changing to another state ⇒ state
transition. Advantages of using an FSM model to underlie the code:

• reduce the number of execution paths through the code
• simplify the conditions tested at each branching point
• simplify switching between different modes of execution.

Basic UML State Diagrams

• state: rounded rectangles labeled with state names
• transitions: arrows labeled with the triggering events optionally followed by list of

actions
• event / trigger: the thing that causes the state transition
• action: the optional thing carried out by the system as a response to the event

28

• initial transition: originates from the solid circle (the default initial state when the
system first begins - entry point) every diagram should have it. initial transitions can
have associated actions

Figure 4.1: basic uml state diagram

Elements of UML state machines:

• event / trigger: something that happens that effects the system.

– can have associated parameters
– an event instance can have a long life-cycle

• state: Governs the reaction of the state machine to events.

– a state can abstract away all possible (but irrelevant) event sequences and only
capture the relevant ones.

– in the context of software systems a state is a single variable that can have only a
limited number of values, usually an provided by an enum type ⇒ the value of the
state variables fully defines thet current state of the system at any given time

• extended state: However interpreting the whole state of machines can become imprac-
tical very quickly (state explosion) ⇒ in UML state is spilt up into:

– enumerable state variable. Corresponds to the qualitative aspect of the whole state
– all other variables which (extended state). Corresponds to the quantitative aspect

of the whole state. Quantitative aspects do not lead to a state change. (See below
for more explanation)

• guard condition: in extended UML a transition can have a guard ⇒ transitions only
fires if the guard is evaluated to true, related to extended states, simplifies number of
states.

29

• actions and transitions: response of the system to an even/trigger.

– action:
∗ changing a variable
∗ performing I/O
∗ invoking a function
∗ generating another event instance
∗ changing to another state
∗ …

– state transition: switching from one state to another state

• run-to-completion execution model (RTC): processing of each event must carried
out to completion before the next event can be carried out.

– incoming event can not interrupt this and are instead stored in an event queue
– This avoids internal concurrency issues within a single state machine.
– During even processing the system is unresponsive / unobservable.
– Advantage: simplicity
– Disadvantage: responsiveness of a state machines is determined by its longest RTC

step.

• hierarchically nested states: repeating transitions common to a group of states can
be factored out as a super (outer) state.

– the complexity of the state machine doesn’t explode (see calculator example below
for more details)

– semantics:
∗ if a system is in a substate surrounded by a superstate, it is automatically also
in that superstate, i.e. the superstate is inherited.

∗ the state machine will try to handle any event first in the context of the
substate, but if it is not defined, it will delegated to the superstate.

• orthogonal regions: compatible and independent regions of states that happen simul-
taneously. (AND-decomposition). ⇒ reduction of combinatorial explosion of sates.

• entry and exit actions: always automatically executed upon entry to state or an exit
from a state. ⇒ guaranteed initialization and cleanup.

• internal transitions: self transitions can be instead represented as internal transition
(without executing the entry and exit actions)

• transition execution sequence:
• local versus external transitions:
• event deferral:

Extended State Example

30

Assume we want to introduce a limit to the number of times keys can be pressed on keyboard,
from the beginning of its execution. In traditional way we would have to introduce 1000 states
that would approach the final state incrementally (state explosion). Instead this quantitative
information can be captured in an additional variable that does not effect the qualitative
state of the system, and is managed via guard conditions:

basically, extended state == variable not represented as state, that interacts with guard
conditions.

Figure 4.2: extended uml state machine exmaple

Hierarchical States Calculator Example

Modelling a simple pocket calculator with traditional FSM introduces many repetitive transi-
tions:

• for every state the event ‘C’ changes the state to operand1
• for every state the event ‘OFF’ changes to the exit state.

Using the superstate on, this common behavior factored out and the total number of transitions
is greatly reduced. Now when the system is, say, in the state opEntered and event ‘C’ takes
place, it can’t be handled by the inner state since it is not defined. Then, by the semantics
of the UML state machines, this event is relegated to the outer state, where it is defined to
transition to itself. From there it enters the inner states entry point, which changes the state
to operand1.

Analogue for ‘OFF’.

31

Figure 4.3: hierarchical states calculator example

4.0.3.2.2 Dialog Models / Activity

Dialog Model: state diagrams applied to UI.

• state ⇒ view
• transition ⇒ execution of a function

History Sates:

• H*: the previous innermost view / state
• H: the previous superstate.

4.0.3.2.3 Interaction Diagrams

interaction diagrams describe communication between various actors.

Various uml interaction diagrams:

• sequence diagrams
• communication diagrams
• time diagram
• interaction overview diagram

32

Sequence Diagram

In programs many objects collaborate with each other to carry out functionality. An objects
collaborates with another by sending messages to it.

• sending message to an object ⇒ calling it’s method: myCDplayer.play("Song 1");
• myCDplayer itself can collaborate with it’s own instance (member) variables, and the

input parameter object "Song 1"
• Collaboration between objects java implies having references to the same object from

several locations in the program.

Also called event diagrams or event scenarios.

Show process interactions arranged in time sequence. Depicts the processes and objects
involved and the sequence of messages exchanged to carry out functionality.

Figure 4.4: seq diag

rectangles represent the duration during which the object is active.

4.0.4 Class Design with OOAD

Steps of the software process:

1. analysis and specification: gathering and representing requirements
2. design: structure and architecture of the software is defined
3. coding: implementation of the end product in detail.

33

Design has the following goals:

1. partitioning the system into manageable units
2. laying out a structure: relationship between the units / parts that make up the whole

system
3. hierarchical partitioning: abstraction that helps understand and maintain a large soft-

ware system

results from requirements:

• Domain / Interaction data diagram: specification of the data in detail
• SFs or UCs: specification of functionality / how functionality is carried out
• Workspaces (UI-Structure): How and where is the data & SF represented and provided

for the user, as well as the navigation between the workspaces.
• View (Virtual Window): the mockup of the GUI

Consideration when making design decisions:

• Data management classes: implementation of domain / interaction data diagram

– which data which classes?
– can some entities be directly taken as classes?
– what operations are necessary?
– how is data storage implemented?

• Classes for internal processing: Implementation of SFs

– how are SFs implemented / distributed among operations of which classes? (note
that SFs do not generally correspond to individual operations, but are combinations
of multiple ops)

• UI classes: Implement the views (virtual windows) and the navigation from the UI-
structure.

4.0.4.1 Design Principles: Cohesion and Coupling

4.0.4.1.1 Cohesion

A measure of or degree to how much the elements of a component belong together.

Goal: high cohesion, i.e. elements within a module or component belong together strongly,
are highly interdependent ⇒ good for maintenance.

We can’t easily partition a highly cohesive module into subparts, where the subparts are
independent of each other.

How to achieve high cohesion:

34

• principles of object orientation (data encapsulation)
• using appropriate design patterns for coupling and decoupling

4.0.4.1.2 Coupling

A measure of the degree of how strongly different components depend on one another.

Goal: low coupling, i.e. low interdependence between different components

Low coupling is good for performance (communication is simpler)

how to reduce coupling:

• interface coupling: information exchange takes place only via interfaces.
• components should call other components as little as possible
• data coupling should be avoided: no shared data among different components
• structure coupling should avoided: no shared structure among different components

Simple and complex operations:

• Simple operation: only direct access of attributes (class access it’s own attributues)
• Complex operation: direct as well as indirect access of attributes (indirect access: class

A access attributes of class B)

– increase coupling
– hinder cohesion

Complex operations should therefore be split up in smaller operations, or encapsulated in own
class whose data they access.

4.0.4.2 OOAD

Object-oriented analysis & design ⇒ systematic development of the design model

the process of: requirements ⇒ class diagram:

• what decision should be made and how?
• what classes are needed, with what operations and attributes should the classes be

equipped?

OOAD 2 step method:

1. Analysis class model: defines class structure based on the requirements
2. Design class model: concrete implementation of the analysis class model using frame-

works, libraries and concrete classes, taking design goals, especially NFRs.

35

4.0.4.2.1 Analysis Class Model / Diagram

4 Steps:

1. Determine classes, attributes, and association from the requirements, with appropriate
names.

2. Determine the operations of the classes: distribute basic operations and SFs as methods
(operations) in classes, taking high cohesion and low coupling into account.

3. Determine complex associations and inheritance relationships
4. Consolidate the class diagram: possibly dissolve interaction / ui classes, consolidate

associations.

3 types of classes:

1. entity class: describes objects with permanent existence

• e.g.: film, actor.

2. control class: describes processes. SFs are initially modelled as such. Serve as placeholder
for complex operations, ultimately are dissolved and distributed as methods among var-
ious appropriate classes

3. boundary / interaction / dialogue class: bundles data and operations that are provided
on the UI.

Step 1

Goal: Determine / derive classes from the requirements

Rules:

1. Entity classes:

• Entities from the data diagram become entity classes, e.g. film and actor.
• associations from the data diagram become the associates between the classes

2. Control classes:

• SF are initially modelled as such
• control classes are linked to the entity classes, whose attributes they access
• control classes are linked to other control classes, which they cooperate with.

3. Boundary classes:

• Workspaces ⇒ boundary classes
• are linked to the entity classes, that are displayed in the workspace
• are linked to the control classes of the SFs that are provided on the UI interface.
• navigation between workspaces ⇒ links / associations between boundary classes.

36

Step 2

Goal: Determine the operations of the classes, dissolve control classes by distributing them
among the various classes as methods. (occasionally a control class can be retained as a
concrete class)

Rules:

1. Dissolve control classes by distributing them among entity and dialogue classes:

1. canonical solution: if control class operates only on the attributes of a single class,
it becomes a method in that class.

2. simple solution: if multiple classes are involved, but the input and output are
associated to one class respectively, then the the control class can be … ?

3. complex solution: if multiple classes are involved, and the output and input relate
to multiple classes, then … ? ⇒ sometimes objectification of the control class

2. Operations can be split up or united, depending on the situation.

• an operation can cover multiple SFs (only for the canonical solution)
• SFs can be implemented by multiple operations

Step 3

Goal: Use inheritance and model complex associations

Step 4

Consolidate the model and possibly dissolve the interaction classes

Rules:

1. place interaction (ui) classes in a separate layer (e.g GUI layer)
2. alternatively assign dialogue classes to some other classes: in this case the class is re-

sponsible both for data and representation on the GUI
3. revising the associations: cover all possible communication links

• each class that has a complex operation must be associated to the classes that they
call

• consolidate the associations
• provide multiplicities (cardinalities)

4. no redundant links: associations that are not used in any SF should be removed.

37

4.0.4.2.2 Design Class Diagram / Model

Goal: preparation for coding by taking design goals into account.

Analysis class diagram gets refined with infrastructure classes (e.g. library) and completed,
often using design patterns.

Steps:

1. complete the list of attributes and operations
2. determine the data types and access specifiers (private, protected, public, etc)
3. specify operations (pre- and postconditions)
4. define exceptions
5. specify concrete data structures that realize associations
6. eliminate multiple inheritance
7. Consolidation via sequence diagrams

Step 3 - Specifying Operations

Specification of an operation specifying the behavior of an operation by providing a contract,
without providing the algorithm

Design by Contract specifying an operation by providing pre-, post-condition and an invari-
ant

• Usually only textual
• Sometimes directly supported by programming languages, e.g

– Javadoc comments in Java
– Assert in Java

Step 4 - Specifying Exceptions

Error situations in code are usually represented as special output values, however this does
not guarantee that the caller will deal with the error.

Instead some programming languages have explicit error handling mechanisms called excep-
tions

in java:

try {
// code that throws and exception of type E

} catch (E e) {
// what to do with the caught exception

}

38

Exception types:

• Exceptions in the domain: input doesn’t satisfy precondition, business logic is violated
• Technical failure: Connection to server failed, called object doesn’t exist

Ways to deal with exceptions:

• directly: using a specific operation
• handing over to the outside: via try-catch block
• not treating: letting the run-time system eventually catch the exceptions

Step 5 - Determining Concrete Data Structures

• Concretizing associations with a qualifier data structure:

Figure 4.5: concretizing with qualifier

39

• concretizing associations by providing a fixed order: if there is a fixed order the objects
associated to some other objects exist, this order can be fixed via a list or iterators.

Step 6 - Eliminating Multiple Inheritance

It is common to have multiple inheritance relationships in analysis models. This should be
eliminated in design models using interfaces.

Step 7 - Consolidation via Sequence Diagrams

Implementations of complex operations (SFs) should be checked using sequence diagrams for:

• high coupling: are too many objects and too many method calls used for the implemen-
tation? Yes ⇒ reduce it by repartitoning the SF into operations

• low cohesion: is there an operation of a class that works with disjoint sets of attributes?
Yes ⇒ can the class be partitioned into multiple classes and will it help with the com-
plexity?

4.0.5 Design Patterns

Transferring experience of good class structure design. Design patterns describes the roles of
classes, their dependencies and associations.

Types of design patterns:

• creational patterns (Erzeugungsmuster)
• structural patterns
• behavioral patterns (Verhaltensmuster)

How a pattern is described:

• name:
• problem: motivation, field of application, problem class
• solution:

– structure (class diagram)
– elements (classes, their associations, and their operations)
– interactions of objects (sequence diagram)

• discussion:

– advantages and disadvantages: when and why should be applied
– dependencies, limitations
– special cases
– known applications (how common is it, how mature is it)

40

advantages:

• proven solutions to recurring problems
• better readability & maintainability of software design and source code
• easier communication via a common vocabulary / language of patterns

– among architects and developers
– among developers

disadvantages:

• using a pattern in a false context: overhead due to unnecessary classes, bad readability,
maintainability etc

4.0.5.1 Creational Patterns

Deal with creation of objects:

• try to hide, unify or simplify it
• describe what is created, how and when

Examples:

• singleton
• abstract superclass
• factory method
• prototype
• builder

4.0.5.1.1 Singleton

• problem: there can exist only a single instance object of a given type.

• solution:

public final class S {
private static S instance;
private S(); // private constructor
public static S getInstance () {

if (instance == null) instance = new S();
return instance;

}
}

41

// usage of singleton
// S s = new S() can't be called because constructor is private, instead
S s = S.getInstance(); // s refers to the single central initialized static instance of S

4.0.5.1.2 Factory Method

• problem: When creating an object, we don’t want to have to specify their exact classes,
i.e we should be able to choose between variouis variants of a product.

• solution:

– Rather than creating an object by calling a constructor, the creation of the object
is delegated to a factory method

– The code that creates the object is outsourced to an own class called Factory or
Creator. Optionally the Creator / Factory class can be abstract or an interface and
the object creation can be implemented in subclasses inheriting from it ⇒ subclass
decides which object type is to be created.

Figure 4.6: factory design pattern

4.0.5.1.3 Builder

• problem: Objects of the a class can be very different if they are complex, requiring a
different constructions. How can the creation of a complex object be simplified, specif-
ically, how can the creation of a process be abstracted from its representation, so that
the details of the way the object is created can be later easily changed, without having
to modify the class?

• solution: Encapsulate the building of a complex object in a separate Builder class, to
which the creaetion of the object is delegated to, instead of creating it directly

42

Figure 4.7: builder pattern

• Director: assembles the object from the sub-parts whose construction is delegated to
Builder objects.

• Builder: the abstract interface for creating objects (products)
• ConcreteBuilder: provides the implementation for the builder

4.0.5.1.4 Abstract Superclass

• problem: different classes contain identical groups of attributes and methods
• solution: refactor the classes, such that the common groups of attributes and methods

are separated in an abstract super class, from which the old classes inherit.

4.0.5.2 Structural Patterns

Deal with combinations and relationships of classes ⇒ allow building larger structures

examples:

1. Composite
2. adapter
3. proxy
4. bridge
5. director

43

6. facade
7. flyweight

4.0.5.2.1 Composite Pattern

• problem: modelling and implementing hierarchical (tree) structures
• solution: a uniform abstract super class from which a leaf and a node class inherits

Figure 4.8: composite design pattern

4.0.5.2.2 Adapter Pattern

Also called wrapper

• problem: A Class A (client) requires a class with a certain interface. There is another
class B, that provides a different kind of interface. We would like to use class B in class
A, even though the interface that B provides is not what A requires.

• solution: Define a separate adapter class that converts the incompatible interface of
class B (adaptee, i.e. the class to be adapted) into the interface that A expects. (this
interface is called the target interface).

4.0.5.2.3 Proxy

• problem:

– Access to an object should be controlled (because it is expensive or sensitive from
a security standpoint)

– Additional functionality should be provided when accessing an object

• solution: A separate proxy object that can be used as a substitute for the other object
(subject). Proxy implements necessary additional functionality.

44

Figure 4.9: adapter design pattern

Figure 4.10: proxy design pattern

45

4.0.5.3 Behavioral Patterns

Deal with algorithms and assigning states to objects. Describe not only classes and objects
but their interactions.

examples:

1. template method pattern
2. command
3. observer
4. visitor
5. interpreter
6. memento
7. strategy
8. iterator
9. mediator
10. state
11. chain of responsibility

4.0.5.3.1 Template Method Pattern

• problem: a method consists both from fixed but also from changeable elements
• solution:

– define a template method, that comprises the scaffolding of the method
– the algorithm is concretely implemented in the inheriting subclasses
– fixed components making up the method are factored to the superclass

4.0.5.3.2 Chain of Responsibility

• problem:

– The sender of a request / message and the receiver of the message shouldn’t be
coupled, or only loosely coupled.

– It should be possible for more than one receiver to handle the request in flexible
ways

• solution: A chain of receiver objects that, depending on run-time conditions, either
handle the request or forward it to the next receiver. This enables a flexible handling
of the request. In other words the sender does not know which object will handle the
request or how exactly.

46

4.0.5.3.3 Observer

• problem: There is a one to many relationship between an object called subject, and
its dependencies, called observers. Observers must be notified whenever the state of
the subject changes and react to it. In other words observers “observe” the subject and
react to its state changes.

• solution:
– Subject maintains a list of observers. Observers have methods to subscribe to or

unsubscribe from the list.
– Subject has a method called notify(), that calls the update() method in each

of the observers that are in the subscribers list. The update() method of each
observer updates each one, making it to react to the state change of the subject.

Figure 4.11: observer pattern

4.0.5.3.4 Visitor

4.0.5.3.5 Strategy

4.0.6 Rationales (Communication of Decisions)

Documents contain only the last decision. Communication of all sorts of decisions and history
of discarded decisions via Rationales.

47

How are rationales described:

• questions: concrete problems that don’t have an obvious solution
• options: describe alternative solutions to a problem
• criteria: quality requirements
• arguments: condensate and summarize discussions
• decisions:

– relates to one or more open questions
– summarizes the chosen options and arguments that support it

48

5 Quality Assurance

Quality: Software satisfies the requirements

topics:

1. Introduction
2. Organizational quality assurance
3. Testing:

1. Intro
2. Test-case specification
3. Black-box component testing
4. White-box component testing
5. System testing
6. Integration testing / overall-component testing

4. Static testing
1. Static Analysis
2. Metrics
3. Inspection

5. Analytical Quality assurance at large

5.0.1 Introduction

Core goals of software engineering:

• quality: software fulfills the requirements ⇐ this
• users: software is useful for the users
• developers: it is easy to develop, maintain and modify the software
• cost / time: software can be implemented within the given cost & time constraints ⇒

project management

Methods of quality control are based on the following questions:

• what are the requirements?
• what errors are there in the system?
• how do the errors originate and manifest in the system?
• how to prevent errors?

49

5.0.1.1 Terms

Validation vs Verification:

• Verification: the product fulfills requirements
• Validation: the requirements correspond to users wishes

Error and deficiency

• Error: discrepancy between the product and the requirements
• Deficiency: a requirement or an expectation is fulfilled insufficiently

Further terms:

1. individual mistake by a person ⇒ standards, norms, training
2. erroneous state / deficiency in a program ⇒ debugging
3. error that manifest in the system ⇒ testing

Above 1 ⇒ 2 ⇒ 3.

How is quality control achieved:

• Quality management: general
• Quality assurance / QA: concrete processes to achieve quality

– Constructive QA ⇒ design, implementation, programming
– Analytical QA ⇒ formal proof, inspection, static linting, dynamic testing
– Organizational QA ⇒ project management

5.0.2 Testing

5.0.2.1 Introduction

Goals is to find errors that manifest in the system (Fehlerwirkung) ⇒ Systematic test:

• Pre-/Postconditions are defined precisesly
• Inputs are systematically specified
• Results are documented and analyzed w.r.t testing criteria

combinatorial state explosion ⇒ Complete testing is never possible

Terms:

• Base: all documents that the test case is derived from (requirements etc)
• Test case: consists of

– collection of inputs

50

– preconditions and edge cases
– expected results
– expected exceptions

• Precondition: the state of the object / environment, that must be specified, s.t. a
test-case can be run

• Postcondition the state of the object / environment after the execution of the test case.
• Test run: execution of test or the suit of tests on a specific version of the test object
• Reaction of the test object: The sequence of internal states, reactions and outputs of

the tested object. They must agree with the requirements / expectation (ideally tested
automatically)

• specification: determining test objects and their test cases, choosing the testing meth-
ods

– derivation from the documentation and logical test cases
– condition to end the test

Test stages:

1. Component / Unit Test
2. Integration test: integrating components with each other
3. System test: whole system
4. acceptance test: after release, by the user / client

(1)⇒ (2) ⇒ (3) ⇒ (4)

Regression Test: after changes in the software test to see if changes craeted new errors

5.0.2.2 Test-case Specification

Elements of a test case:

• expected behavior based on a test oracle:

– requirements specification
– user manual
– executable prototype (formal specification)
– old version

• two abstraction levels when describing the test case

– logical: range of input / output, possibly via equivalence classes
– concrete: specific input / output values, possibly representatives of equivalence

classes

Description of a test case:

51

• name
• tested requirement / relation to a requirement
• type: component, integration, system, acceptance
• precondition
• postcondition
• test infrastructure
• description of test steps. For each step:

– input
– expected output
– expected exception

5.0.2.3 Component

Component: a self-contained code unit ⇒ class, function, module

typical erroneous behavior of a component:

• non-termination
• incorrect or incomplete result
• unexpected / incorrect error message
• inconsistent memory
• superfluous resource load
• unexpected exception behavior, e.g. crash

Component test types:

• Black-box: no knowledge of the internal implementation of the object, only the interface
and specification.

• White-box: purposeful testing inner elements and the flow of execution, using the knowl-
edge of its internal structure.

• Intuitive: based on knowledge / experience of typical errors ⇒ supplementary to the two
systematic test above.

5.0.2.4 Black-box Component Testing

Properties of a black-box test:

• Test cases are derived from the input / output behavior of the operation (specification)
• The goal when deriving the text cases is the coverage of:

– input values
– output values
– specified exceptions

52

• especially tests that all the requirements on the operation are satisfied.

Test case description for a an operation / method test:

• name
• tested component (class)
• type: component test
• precondition: regarding relevant component data and restriction on the input
• postcondition: updated component data
• test steps: detailed description of the steps,

– input
– expected output
– expected exception

5.0.2.4.1 Equivalence Class Tests

Equivalence class:

• Idea: Partitioning of the range of input / output values into classes, such that values
from the same equivalence class demonstrate conceptually same behavior and a single
value from that class can be chosen as a representative.

• Boundary values: if the rang of values of an EQ are ordered, then

– values on both of the exact boundaries (min and max)
– as well as the neighbors of the boundaries: pred(min), succ(min), pred(max),

succ(max)

typical equivalence classes:

• input:

– Valid input EQ (GEK): Valid input range, possibly subdivided w.r.t. the boundary
values

– Invalid input EQ (UEK): invalid input range

• output:

– Valid output EQ (GAK): partitioning of valid input ranges s.t. various typical
output values are covered (also possible subdivisions w.r.t boundary values)

– Invalid output EQ (UAK): Exceptions

Deriving test cases based on EQ

• if there are multiple inputs:

– combine all valid EQs of various inputs (cartesian product) ({GEK1, GAK1} x …
x {GEKn, GAKn})

53

– combine all valid EQs with all possible invalid EQs {GEK1, GAK1, … , GEKn,
GAKn} x {UEK1, UAK1, …, UEKn, UAKn}

Simplification:

• only frequent combinations
• only test cases with boundary values
• only pair-wise combinations

Minimal:

• each valid equivalence appears in one test case

5.0.2.5 White-box Component Test

white-box component test:

• Test cases are derived from the knowledge of the code base.
• The goal is to test weather all of parts of the code are correct.
• Requirements specification is additionally necessary as a test oracle , i.e to determine

what the results of the tests should be.

Main goal is the achieve coverage of the code:

• Statement Coverage
• Branching Coverage
• Path Coverage

Coverage can be seen on the control-flow graph

5.0.2.5.1 Control-flow Graph

Control-flow graph is an abstraction of the code, s.t.:

• consecutive statements are united
• all branches are visible: multiple execution flows from a statement ⇒ individual node.
• jumps ⇒ individual nodes
• possibly few nodes!

Rules:

1. consecutive statements until the end of a block, especially until the next if-branching
or while-loop are combined to a single node. (the branching or loop condition can be
included in the node as well)

54

Figure 5.1: control-flow graph example

55

2. if a block consist of multiple nodes the brace closing the block gets its own individual
node. (other than the brace closing the program)

3. The node of the negative case of an if-else branch contains the else line and the following
statements.

4. The condition of a loop-statement get an individual node (due to the jump).
5. If earlier return statements exist in the program, the return statement becomes a node

that can be reached in various ways.

5.0.2.5.2 Statement, Branching, Path and Term Coverage

Statement Coverage

Nodes in the control flow graph are (combinations) of statements. 100%-statement coverage
⇒ all nodes of the graph are visited. In the previous example:

• (1-4) ⇒ (5-7) ⇒ (8) ⇒ (9 - 10) ⇒ (13,14) ⇒ (15) ⇒ (18) ⇒ (19) ⇒ (8) ⇒ (9-10) ⇒
(13-14) ⇒ (16,17) ⇒ (18) ⇒ (19) ⇒ (8) ⇒ (20) ⇒ (21)

Which input achieves this sequence? ⇒ key == 15, a == [1, 15, 17, 19, 20]

Note

100% node coverage does not imply that all equivalence classes are covered

Branch Coverage

branch coverage:

• edges ⇒ branches.
• branch coverage ⇒ all edges are visited

previous example doesn’t cover the edge (1-4)⇒(21). This corresponds to the case when the
input array is empty: a == [], which in turn is a UAK.

5.0.2.5.3 Term Coverage

• For complex branching and loop conditions every part making up the condition should
be covered, i.e. every term making up the complete expression is “activated” at least
once, for both when the whole condition is true, as well as false.

• Goal is to discover possible bugs due to individual terms.

Example: if(X or Y). Here X and Y are terms and X or Y is the complex condition.

56

5.0.2.5.4 Path Coverage

• Path: Sequences / combinations of edges
• 100% path coverage not feasible & not easy to define.

5.0.2.6 Grey-box Testing: White-box + Black-Box

1. first define black-box test cases: simpler, since only requirements are sufficient.
2. check which portions of code are not reached by the black-box tests. (e.g. with coverage

plugins)
3. complete the test suite by writing additional white-box tests such that 100% statement

and brach coverage is achieved.

5.0.2.7 Class / Object Test

Previously we discussed testing smaller units, like methods. We can also test larger components
like classes (objects).

Individual methods of class ⇒ gray-box.

But for testing interoperability of the methods of the whole class ⇒ state based test based on
the state diagram of the object. Testcases are then sequences of methods calls on the object
that traverse various states of the object.

5.0.2.8 System Test

System test:

• Test weather client requirements are correctly implemented ⇒ verification.
• Test environment should be as close to production environment as possible, but

the production environment itself is not usually completely appropriate because lack or
control and risk of damage.

• Both individual SF’s as well as seqences of SFs (Use Cases) can be tested.
• quality features should be tested (performance, security etc)

57

5.0.2.8.1 Black-box test case specifications for system tests:

• name
• tested system function
• type: systemtest
• precondition system: precondition on the data
• precondition GUI: what is shown on the GUI? ⇐ new
• test steps: actions that need to be taken on the GUI for data input and calling the SF.
• expected exceptions: problems that can occur during the exeuction of the test ⇒

Error message / error dialogue, or unavailability of SFs
• postcondition system: postcondition on the data
• postcondition GUI: What is the state of the GUI after successful execution?

5.0.2.9 Integration Test

• test the interoperability of components
• assumes that components are correct (tested)
• test against an technical specification (design)
• components are integrated incrementally, step-by-step.
• requires monitors: units that observe interfaces between components.
• requires stubs / drivers that temporarily stand for not yet tested components

5.0.2.9.1 How are components interrelated ?

• communication: a component calls a method of another
• shared data: components access shared resrouces (variables, data, database), or use

same data as a communication medium (asynchronously).
• shared system resources: cpu, memory, hard disk.

5.0.2.9.2 Possible problems when components are integrated

• Wrong receiver of a message
• Wrong service / operation (operation is missing or incompletely implemented)
• Wrong call time (preconditions of the receiver are not met)
• Violation of message / calls sequences
• Mistakes in data passing:

– passed data is syntactically incorrect
– passed data is interpreted incorrectly

• Incorrect memory management (allocation / deallocation)
• Mistakes in OS / Middleware (Database, ORB) calls

58

• Configuration and version inconsistencies
• Divergent / conflicting interpretations of requirements by different teams (especially in

distributed development)
• Incorrect usage of an interface.
• Synchronization in real-time systems.

5.0.2.9.3 Coverage in Integration Tests

• Integration test should test the interoperability between all components.

– which order, which components first?
– difficult to achieve this systematically, because of various complex and circular

interdependencies.

• ⇒ Choice of an Integration Strategy:

– Top-to-bottom ⇒ use stubs incrementally
– Bottom-up ⇒ use test drivers incrementally

5.0.2.9.4 Integration testing specific to OO

• test initially individual classes
• subsequently test interdependent classes: due to lack of a strict hierarchy, top-bottom /

bottom-up not perfectly applicable ⇒ scenario-based tests instead.

How are objects / classes interdependent?

• communication:

– operation calls
– using attributes of the other class
– objects / references to objects as input parameters to operations

• shared data: global variables
• shared (system) resources:

– composition / aggregation (initialization dependencies)
– shared namespace

• inheritance:

Common OO errors:

• operation is not available (configuration problems)
• incorrect object / operation called (during runtime binding)
• crash / deadlock due to usage of shared resources (process, interface)

59

5.0.3 Static Testing

again,

• Software quality:

– organisational
∗ programming language
∗ configuration management
∗ pair programming
∗ bug / error management

– constructive:
∗ guidelines / templates
∗ tools
∗ methods / notation
∗ training

– analytical:
∗ static analysis: computers
∗ inspection: humans
∗ dynamic testing: execution using computers

5.0.3.1 Static Analysis

static analysis:

• compilers
• analyzer / linters

things that can be enforced / checked / discovered:

• syntax errors, as well as

– type checking
– not declared variables
– unreachable (dead) code
– array / field bounds
– consistent usage of interfaces

• deviation from conventions / standards
• conspicuous metrics
• control-flow and data-flow anomalies

60

5.0.3.2 Metrics

things like:

• documents (including code)

– quality
– volume and scope:

∗ LOC (lines of code) ⇒ complexity and error-proneness
∗ Fan in / Fan-out:

· Fan in: number of functions that call a function X. high Fan-in ⇒ high
coupling

· Fan-out: number of functions that are called by X. high ⇒ complex control
logic

∗ Branching depth: high ⇒ difficult to understand, error-prone

5.0.3.2.1 OO Metrics

• Complexity of an operation: number of test cases necessary to achieve branching coverage
• Complexity of a class:

– number of operations (weighted with their respective complexities, see above)
– inheritance depth
– number of operations that overwrite the superclass version

• Low cohesion in a class: nu of op pairs that don’t use a common attribute - nu of op
pairs that use a common attribute

• coupling: external dependencies: fan-in / out w.r.t to operations

5.0.3.3 Inspection

Manual checking by humans of all sorts of documents (including code):

• necessary, because many documents can be checked by computers like:

– lastenheft
– pflichtenheft
– user manual
– …

61

5.0.3.3.1 Inspection Methods

various methods:

1. durchsicht
2. stellungnahme
3. technical review
4. walkhrough
5. design & code inspections

increases in complexity and thoroughness.

how is a document reviewed:

• reading techniques:

– ad-hoc
– check-list based:

∗ can be derived from guidelines
– error-class / type based (similar to check-list)
– perspective based (primarily for document other than program code) ⇒ good for

discovering semantic deficiencies: the reviewer reviews the doc from a specific per-
spective, and looks for the error regarding that perspective and a scenario
∗ Perspective:

· client
· developer
· tester

∗ Scenario: use the document in a sepcific way, to achieve a specific task with
the goal to discover erros.

Durchsicht

• Carried out by one developer alone.
• Away from the screen, alone.
• Should be always done by the developer anyways, not redundant due to other inspection

methods.

Stellungnahme

• There is no manager, the author of the unit organizes and leads the review.
• Author is the manager and selects the reviewers.
• document is modified during the review without a protocol.

62

Technical Review

• goal: find errors (not correct) and document them
• test subject: any self-contained unit; method, module, class, document, etc
• required reference documents: specification, guidelines, question catalogue
• team: (author does review)

– reviewers (gutachter): get specific tasks and types of errors that they should look
out for

– moderator: conducts / manages the review
– notary: documents / writes down the protocoll
– author: one of the people who created the unit
– manager: the boss who assigned the review task to the team (shouldn’t participate

initially)

method:

• initiation: team is formed, members are assigned
• preparation: Reviewers read the doc and check it w.r.t. the tasks / points they were

assigned
• review session: reviewers present their findings, discuss, weigh and protocol them.
• result: list of problems, errors and suggestions
• 3rd round: Reviewers and author talk and discuss without a protocols.
• nacharbeit:

rules:

Structured Walkthrough

• cheaper version of the technical review
• author = moderator
• author presents their document stepwise
• reviewers ask prepared or spontaneous questions to discover problems
• problems are documented / protocoled

typical for reviewing program code, albeit lower efficiency compared to the technical review.

Design & Code Inspection

The “noble” variant of the technical review with more formalities, but otherwise the same
thing.

63

5.0.4 Analytical Quality Assurance at Large

Methods from testing units can be applied to large systems as well:

• static analysis
• reviews
• dynamic tests

but with more planning and larger documents.

5.0.4.1 Method of Analytical QA

method:

1. panning ⇒ resources, who carries out the activities?

• goal: determine a testing strategy ⇒ methods, expends w.r.t. costs / risks

2. test specification ⇒ what, how, which methods?
3. test protocol, documentation of results $�
4. QA evaluation ⇒ what is the state of the test object, does it satisfy the quality require-

ments, what should be done?

• uses metrics: coverage, error discovery rate

5. QA management ⇒ stability ⇒ usually associated with continuous build.

software costs categories:

1. net production costs
2. quality costs

• error prevention costs (QA)
• testing and correction costs (QA)
• error costs

– error searching costs (during development)
– troubleshooting costs (during development)
– subsequent costs of error in practice (in the field)

• reduction in usage of the product

3. maintenance costs

goal: reduce total costs

64

5.0.4.2 Principles of Analytical QA

1. Complete testing is not possible
2. program testing ca be used to show presence of bugs, but not their absence
3. Testing is not a late phase in software development, it should be done as early as possible

⇒ reduces costs
4. Errors / bugs are not distributed evenly in the system rather often occur in clusters.

Presence of bugs ⇒ other bugs in close proximity
5. repeating same tests doesn’t bring anything new
6. Bug-free system doesn’t mean that the system fulfills users expections ⇒ Validation vs

Verification.

65

6 Evolution

All activities that facilitate re-use and further development. (All activities that take place
after the initial development phase)

topics:

1. Intro
2. Architecture
3. Re-use
4. Further development and change management
5. DevOps & IT-Governance
6. Re-engineering

6.0.1 Introduction

Again, core questions of SE:

1. Quality: how to ensure that the software fulfills the requirements?
2. Users: How to ensure that software is useful?
3. Developers: How to ensure that software is easy to understand, maintain and modify?

⇐ this
4. Costs / Time: How to ensure that the product will be ready within that given costs /

time constraints?

core tasks of SE:

1. Development:

• determining the context of the software
• requirements engineering
• architecture
• detailed design
• implementation
• configuration management

2. Quality Management:

• Product: testing, inspection, metrics

66

• Process: measurement, improvement, fine-tuning

3. Evolution

• operation
• Modification / further development
• re-use
• re-engineering
• change management

4. Project Management

• team
• costs
• appointments
• risks
• client / contractor relationship

Definition: all activities that support maintaining, further developing and reusing the prod-
uct, and take place after the initial development phase:

• Software products are continuously developed and modified ⇒ evolution.
• Software isn’t developed from 0 (no Greenfield development)
• Code should be easy to modify: Design patterns, architecture, reuse
• Management of software development should and operation be oriented according to

evolution:

– change management
– DevOps and IT-Governance

• re-engineering: if the initial development of the software was bad, it could be necessary
to improve it retrospectively.

6.0.2 Architecture

Definition:

• description of the fundamental organization of a system: components of a system, their
relationship to each other and to the environment.

• description of design principles of a system

67

6.0.2.1 Elements / levels of architectural design:

1. Goals
2. External systems ⇒ conceptual view
3. Components ⇒ components view
4. Resources ⇒ physical view
5. Processes ⇒ runtime / process view
6. Operational concept ⇒ operational view

6.0.2.1.1 Architectural Design Goals

The architectural structure is defined in order to achieve and concretize certain QRs like:

• flexibility: configurability, maintainability, modifiability
• operational security: security and reliability (robustness), availability
• efficiency

Example: Operation security:

1. firewall
2. layers

6.0.2.1.2 External Systems

• Existing application software that neighbor and interact with the system ⇒ Conceptional
View (Configuration Diagrams)

• Conceptional View ⇒ Client, Users

6.0.2.1.3 Components

• Components, interfaces, and inner structure: bundling and concretization of analysis
classes, static QR (e.g. maintainability)

• Component View: similar to class structure but units are larger and consist of other
classes ⇒ developers

6.0.2.1.4 Resources

• resources and the physical distribution of the components over the resources: dynamic
QRs (efficiency, reliability, availability)

• resources: needed hardware and software

– hardware: computers (processors), network (communication), screens / terminals
(I/O)

68

– software: middleware (database), system software (operating system).

• run-time view ⇒ Client, Developer, Programmer

6.0.2.1.5 Processes

• processes represent the system during runtime, they have to coordinated: dynamic QRs
• runtime view ⇒ Integrator, developer
• examples:

– java threads
– batch processes
– dialogue processes (reaction to user input)

6.0.2.1.6 Operational Concept

• description of the edge-cases of system usage:

– installing, de-installing
– starting the system, shutting the system off
– resource failure
– component failure

• operational view ⇒ client, operator.

6.0.2.2 Tasks of Architectural Design

1. Refining and agreeing on architecture and design goals
2. Defining architecture
3. evaluating the architecture via prototypes & assessment
4. Iteration and modification of the architecture

6.0.2.3 Modeling Architecture

1. component structure

1. package diagram (purely logical structure of the system, usually code packages)
2. composite structure diagram (static): how is a system structure and how are the

components interrelated? ⇒ UML component diagram.
3. dynamic component diagram: which components are created at runtime and how

are they interrelated?

2. Physical structure

1. distribution diagram ⇒ UML distribution diagram

69

6.0.2.4 Architectural Patterns

Proven solutions to standard reoccurring architectural problems.

They are differentiated w.r.t. the view, each view can have it’s own solution, (the solutions
can and do co-exist):

1. component view:

1. Layered Architecture
2. MVC

2. physical view (distribution patterns)

1. central system
2. client / server: two-tier / three-tier

3. run-time view (control patterns):

• Central control:
1. Call-return
2. Master-slave

6.0.2.4.1 Component View Patterns

Layers

• problem / goals:

– simple structure
– functions should abstracted / separated from one another
– function call only possible in one way
– parallel and sequential development of a systems components is possible

• solution: layers and interfaces between layers

– each layer provides services to the layers above and use service from the above layers

• advantages:

– design is simplified due to abstraction layers
– extensions are possible by introducing new layers
– implementation of a layer can be easily substituted with a new one.

• shortcomings:

– layered architecture is not always suitable
– not easy to decide how to exactly structure layers

70

– too many layers ⇒ inefficient.

• examples: communication protocols, databases, operating systems.

Model-View-Controller (MVC)

MVC is a variant of the layered architecture:

3 layers:

1. controller: implements the business logic, processes the user input and the data
2. view: presents the data to the user (gets the data from the model as an observer)
3. model: contains the data

6.0.2.4.2 Physical Layer (Distribution View Patterns)

Central System

• problem / goals:

– business logic and data should at a central location
– only authorized parties should have access
– all non-trivial processes happen at the central location

• solution: central system and terminals accessing it
• examples: classical mainframe applications, local pc applications

Client/Server

Similar to central system, but some of the processing is done by the clients.

• problems / goals:

– data should be central
– not all business logic is central, some of it relegated to the so-called clients.

• solution: two-tier client/server architecture

– client (front-end): short-lived process for a task
– server (back-end): long-lived, persistent process (always runs on the background)

6.0.2.4.3 Runtime View (Control Patterns)

71

Central Control - Call Return Pattern

• problem / goals:

– we want to control the calling of sub-programs
– always exactly one sub-program is active
– a central main program exists that controls the calls

• solution:

– classic workflow structure of procedural systems
– the base is a constantly running main program
– main program calls other sub-programs
– during the execution of the sub-program the main program is still running (in idle

mode)
– sub-programs can call other sub-programs

• advantage: simple
• shortcomings:

– low parallelization
– exceptions are difficult to handle

Central Control - Master / Slave

• problem / goals:

– Central periodic querying of state updates
– Reaction to events via a central program

• solution:

– A central infinite loop (master) for handling / reacting to events
– master checks for events or state updates ⇒ carries out corresponding activities as

a reaction

• advantage: gut for constructing real-time systems

6.0.3 Reuse

Using existing software in new environments, e.g. Class library

• goals:

– quality assurance: reused part is already tested
– reducing expenses

72

• problems:

– psychology: Not Invented Here
– adaption costs (direct reuse is rarely possible)

• methods for reuse:

– procedures ⇒ information hiding modules ⇒ OOP / inheritance ⇒ program gen-
erators ⇒ frameworks ⇒ patterns ⇒ components ⇒ product lines ⇒ model driven
architecture, service oriented architecture, microservices

6.0.3.1 Frameworks

a collection of classes that represent an abstract solution to a family of problems

• goals: reuse of code, architecture and design principles.
• reuse of behavioral pattern of a collection of classes
• homogenous behavior of systems and implementations that use this framework to solve

a family of problems
• don’t call us, we call you: classes, their interrelationships, overall system structure and

behavior is predefined ⇒ adjustment in subclasses.
• advantages:

– passing on expert knowledge
– predefined and well-thought-out design saves effort
– maintenance effort is reduced
– well suitable for systematic testing
– facilitates integration and consistency of related requirements (that lead to the

development of the framework in the first place)
– difficulties / shortcomings:

∗ creating frameworks is difficult
∗ understanding / getting accustomed with frameworks takes effort ⇒ extra doc-
umentation

∗ combining various frameworks is difficult.

6.0.3.2 Components (Component-Ware)

The ideal form of software development is the construction of software from predefined building
blocks.

• Components ⇒ generic building blocks:

– adaptable
– composable

73

• simple compositional mechanisms

– tools
– graphical tools

• infrastructure for component interaction: “object bus”
• examples:

– JavaBeans,
– CORBA
– Microsoft COM+
– Web Services

Features of components:

• interfaces: explicitly defined interaction with other components and the environment

– client components, server components

• context dependencies:

– required component infrastructure
– system resources

• independent deployment: components are self-contained
• composition by third parties:

Shortcomings:

• components are interoperable but only within the same technology, interoperability
among different technologies is not possible

• often components are developed specific to a project„ thus the components become not
reusable, only the infrastructure

6.0.3.3 Service Oriented Architecture (SOA)

Architecture consists of reusable, loosely coupled and fully interoperable business services:

• reusable: interface and implementation are separate
• loosely coupled: services are dynamically looked up and bound over a common enter-

prise infrastructure (enterprise service bus)
• fully interoperable: open standards, security, synchronous communication over a rest-

ful API (stateless)
• flexible: Business processes can be flexibly composed
• describes methods how applications are developed based on such an architecture.

74

6.0.3.4 Microservices

Similar to SOA, but not for the whole enterprise, rather on the level of individual applications.
There is no shared infrastructure.

6.0.3.5 Cloud

• IaaS (Infrastructure as a Service): Hardware is provided on the cloud
• PaaS (Platform as a Service): Programming / Development on the cloud
• SaaS (Software as a Service): Software on the cloud

6.0.3.6 Product Lines

Common features and core assets shared over an iteration of products that target a similar
market, and have similar goals.

6.0.4 Change Management and Further Development

• Software has to be constantly developed further and maintained.
• types of changes

– corrective
– adaptive
– improving / preventive

• methods:

– traditional: try to predict the future changes and design software accordingly in
advance (very generic, strongly modularized) ⇒ difficult, costly

– agile: changes are difficult to predict ⇒ lay out the process s.t. changes are easy
to introduce (regression tests, re-factoring)

– synthesis (risk management): estimate the costs and risks of serious changes; design
the software with that in mind. For the rest use agile.

Steps of change management:

1. preparation: Verfolgbarkeit
2. identification of change requests. Consists of

• originator:
• affected components:
• if the request originates based on an error ⇒ reproducability of the error:
• description of the problem:

75

• what to do? :
• classification of the severity of the problem:
• status of the change request:

3. planing of changes
4. carrying out changes

Problems related to carrying out changes:

• high pressure for critical changes
• re-engineering has higher priority
• missing documentation
• regression tests are not sufficiently supported
• introduction of new errors
• too frequent changes
• good tools are missing (configuration management)

6.0.4.1 Verfolgbarkeit / Traceability

The ability to track the life of an element and describe it, both forward and backward

various types:

• single level (e.g. traceability between requirements, i.e. only on the level of requirements)
• over various levels, e.g. requirements ⇒ design ⇒ code.
• various versions (evolutionary)

properties:

• important in safety-critical systems.

6.0.5 DevOps & IT-Governance

How to organize this well? ⇒ Development and Operations should be considered as closely
related activities ⇒ DevOps

IT-Governance: Operation of Software + Hardware (encompasses DevOps)

76

6.0.5.1 Software operation

Consists of

• launch
• maintenance
• change / further dev

launch:

• installation
• instruction
• start-up (especially prepping the initial data). Various types:

– directly changing to new software
– running new software initially parallel with the old: can be compared, higher safety,

higher costs
– test run (pilot installation, beta-test):

∗ new software with old data, or
∗ stepwise adoption of parts of the new software (incrementally)

6.0.5.2 DevOps

Above we defined what software operations entail (launch, maintenance, change / further dev).
Earlier Development and Operation where separate department. Nowadays development and
operations are considered together and done by the same department.

DevOps principles:

• everyone is responsible for all aspects (development and operation)
• everything that can be automated should be automated: test, launch, support
• initially measure, then change (DevOps processes and tools)

DevOps automation <=> Code management system <=> DevOps Metrics / Measurements

DevOps automation:

• CI (continuous integration): a change released on master ⇒ updated, executable version
of the system is generated and tested

• CDel (continuous delivery): after CI an operating / production environment is simulated
and the software is tested there

• CDep (continuous deployment): after CDel the new version is installed / provided on
the users-end

77

IaC (infrastructure as code): configuration of the system needed for DevOps is in machine
readable form (scripts) instead of manual processes. ⇒ automation.

DevOps metrics:

• MTTR (mean time to recover)
• percentage of failed deploymnets
• deployment frequency
• amount of customer complaints
• percentage increase of customers
• …

6.0.5.3 IT-Governance

• IT-Technology (IT): entirety of a firms hardware and software
• IT-governance: management of IT, ensuring alignment with regulations, principles and

goals.

6.0.6 Re-engineering

Improving the quality of the software without changing the functionality

Steps:

1. reverse engineering: Understanding of a system based on an incomplete documentation
2. restructuring (refactoring in agile): transformation of a structure to another one at the

same level of abstraction, typically architecture level or design level.
3. forward engineering: introducing the changes to the new structure (change management)

6.0.6.1 Reverse Engineering

various models that can be derived with reverse engineering:

• reconstruction: derivation of system architecture
• re-specification: derivation of requirements from system behavior as a black-box.
• re-documentation: extending the documentation, e.g. generating a class diagram from a

code-base.

78

6.0.6.2 Legacy Systems

legacy system: old, large, important software.

re-engineering is too costly, instead

• wrapping
• migration: software is replaced incrementally
• re-development: functionality of the old software developed independently, then the old

software is replaced.

79

7 SWE Process & Project Management

Making sure that the Software system is developed withing the time money constraints.

topics:

1. Project management
2. SWE-process models & methods

7.0.1 Intro

Related core question: how ensure that the software system will be successfully developed using
given resources (money, humans, technology) within the defined time and cost constraints?

• process: Abstract specification of the method and it’s structure that will be used to
develop the software.

• project: An instance of such a process

7.0.2 Project Management

The application of knowledge, skills, tools, and techniques to activities contained in a project
to achieve the project requirements.

contents of PM:

• appointments (milestones)
• costs
• risks
• participants:

– team
– client / contractor

• functionality
• quality

magical pentagon:

1. project contents / function

80

Figure 7.1: magical pentagon

2. quality / effectivity
3. costs / efficiency
4. time / risks
5. participants
6. methods / tools

Task of project management:

1. planning
2. organization
3. personnel development
4. leadership / coordination
5. control
6. motivate and inform

phases of project management:

1. start / initiate
2. plan
3. control and execute ⇒ feedback control loop
4. close

81

7.0.3 SWE-Process models & methods

For every project there is an underlying process (process model)

How is process described:

• actors
• activities
• results
• guidelines
• boundary conditions

7.0.3.1 Process Models

General paradigms:

• waterfall
• evolutionary / iterative / incremental development
• spiral
• V-model
• agile

Process models in practice

• V-Model XT
• XP, Scrum (Agile processes)

7.0.3.1.1 Waterfall

Waterfall model is Stepwise:

• requirements analysis <=> functional spec <=> design <=> implementation <=>
testing

Evaluation:

• not flexible: dependency on earlier steps
• late testing
• late implementation ⇒ late validation / verification
• clear separation of tasks nd steps, low management effort

82

7.0.3.1.2 Evolution / Iteration / Increment

• early validation of requirements

– rapid prototyping: via a prototype
– evolutionary: prototype gets improved on
– iterative: all of the steps are decomposed in small increments (from requirements

to coding)
– incremental: step-wise further development of a core system

Evaluation:

1. early QA via a prototype and early deployment (of a prototype)
2. early communication with users via prototype / early deployment
3. iteration is further development in small steps
4. iterations in small steps is good but not easy to determine the iteration steps in advance

for large project
5. For rapid prototyping and evolutionary methods there is no clear project planning, there-

fore suitable only for smaller projects.

7.0.3.1.3 Spiral Model

The Spiral Model is a risk-driven software development and project management approach
that combines iterative development with systematic risk analysis. It consists of four key
phases:

1. Planning – Define objectives, constraints, and alternatives.

2. Risk Analysis – Identify and assess risks, and develop mitigation strategies.

3. Engineering & Development – Build, test, and refine prototypes or system compo-
nents.

4. Evaluation & Review – Gather feedback, validate progress, and decide on next itera-
tions.

This process repeats in cycles (spirals), gradually refining the system with each iteration.
It is particularly useful for complex, high-risk projects requiring flexibility and continuous
stakeholder involvement.

Evaluation:

• early QA due to risk analysis and testing
• early communication with users via prototypes ⇒ early validation / verification
• many documents (danger of having too much documentation)

83

• high flexibility due to repetitive planning, goal and risk analysis
• high management effor ⇒ suitable for large projects

7.0.3.1.4 V-Modell

A verification and validation-driven development model that expands the Waterfall model into
a V-shaped structure. Each development phase (left side) has a corresponding testing phase
(right side). It ensures early defect detection and is widely used in safety-critical systems (e.g.,
aerospace, automotive).

The phases and their corresponding tests:

1. requirements definition <=> acceptance test, system test
2. rough design <=> system test, integration test
3. detailed design <=> integration test, module test
4. module specification <=> module test
5. programming (where the two branches meet)

Evaluation:

1. very good QA due to early QA-planning and testing at each phase
2. no prototyping, late implementation, no iterations like in waterfall
3. early QA planning simplifies QA management aspect of PM
4. should be used in conjunction with iterative methods

7.0.3.1.5 V-Modell XT

A German government standard for system and software development, refining the V-Modell
with increased flexibility, modularity, and project tailoring. It emphasizes customization based
on project needs and is commonly used in public sector and large-scale projects.

Evaluation:

• early QA-planning like V-Model and risk-analysis like spiral model
• if agile or incremental methods are applied then early validation with the users is possible
• Very beurocratic and documentation-heavy ⇒ suitable only for large projects
• adaptability to different projects is good but high effort

84

7.0.3.1.6 XP: An Agile Process

An agile software development methodology focusing on frequent releases, continuous feedback,
and close collaboration. Key practices include

• pair programming,
• test-driven development (TDD),
• continuous integration,
• continuous customer involvement.
• Ideal for projects requiring rapid adaptability and high-quality code.

Key features:

• on-site customer
• short increments
• planning game ⇒ user stories
• simple design
• refactoring
• pair programming
• unit test
• CI/CD
• coding standards

7.0.3.1.7 Scrum: Another Agile Process

lightweight agile framework for managing complex projects through iterations (sprints). It
features time-boxed cycles (2–4 weeks), daily stand-ups, backlog management, and defined
roles (Scrum Master, Product Owner, Developers). Best suited for dynamic, fast-changing
environments.

process:

• client requirements as story
• analysis
• planning
• implementation / evaluation
• metrics

in short iterations.

roles:

• ProductOwner:

– represents client
– defines vision of the software

85

– creates user stories
– prioritizes requirements in the product backlog

• Team: planning and results
• ScrumMaster (not the same as ProjectManager)

– facilitates productive environment for the team
– communication ProductOwner <=> Team
– makes decisions

artifacts:

• User story: consts of cards, conversations and acceptance criteria

– cards: 1 sentence as a requirement “As user role X I want to do Y”
– conversation: all question necessary for understanding of the software
– acceptance criteria: description when a story is considered fully implmented?

• product backlog:

– list of all user stories of current sprint
– user stories are prioritized

Evaluation of XP and Scrum:

• very good QS-practices: acceptance test, Unit-test
• very good user validation and user communication: onsite-customer (XP), ProductOwner

(Scrum)
• furhter development and maintenance not very well supported due to lack of documen-

tation (XP very little documentation, Scrum user stories not very sufficient)
• adherence to the plan and complience with resources very good:

– XP: 40h week
– Scrum: ScrumManager

• too little structure for large projects.

7.0.3.1.8 New Approaches: Continuous Software Engineering

A modern software engineering approach emphasizing continuous integration, deployment, and
delivery (CI/CD). Developers frequently commit changes, ensuring automated testing and
deployment. This enables rapid, reliable software updates and is crucial for DevOps and
cloud-native development.

86

	Preface
	Chapters

	Introduction to SE
	Communication in a Project
	Projects and Participants
	Contractual Relationship
	Team Organization
	Collaborative Coding

	Requirements Engineering
	Communication with Users / Clients
	Usage Modelling
	Roles, Persona
	Tasks
	Domain Data
	Functions & UI-Structure (Interaction Level)
	Design of System Functions and UI-Structure
	GUI

	Documentation Quality
	Usability
	Quality Assurance with the Clients
	Acceptance Test
	Usability Test

	Quality requirements
	Motivation
	Quality Attributes
	Describing QR
	Testing QR

	Use Cases
	Description of a UC
	Use of System Tests

	RE Procedure - Method of RE
	Introduction
	Gathering Requirements
	Specifying Requirements

	Design
	Introduction to Modelling
	4 + 1 Architectural View Model
	UML
	Structure Diagrams
	Behavior Diagrams

	Class Design with OOAD
	Design Principles: Cohesion and Coupling
	OOAD

	Design Patterns
	Creational Patterns
	Structural Patterns
	Behavioral Patterns

	Rationales (Communication of Decisions)

	Quality Assurance
	Introduction
	Terms

	Testing
	Introduction
	Test-case Specification
	Component
	Black-box Component Testing
	White-box Component Test
	Grey-box Testing: White-box + Black-Box
	Class / Object Test
	System Test
	Integration Test

	Static Testing
	Static Analysis
	Metrics
	Inspection

	Analytical Quality Assurance at Large
	Method of Analytical QA
	Principles of Analytical QA

	Evolution
	Introduction
	Architecture
	Elements / levels of architectural design:
	Tasks of Architectural Design
	Modeling Architecture
	Architectural Patterns

	Reuse
	Frameworks
	Components (Component-Ware)
	Service Oriented Architecture (SOA)
	Microservices
	Cloud
	Product Lines

	Change Management and Further Development
	Verfolgbarkeit / Traceability

	DevOps & IT-Governance
	Software operation
	DevOps
	IT-Governance

	Re-engineering
	Reverse Engineering
	Legacy Systems

	SWE Process & Project Management
	Intro
	Project Management
	SWE-Process models & methods
	Process Models

