1  Program Run-time Analysis

1.1 Reccurence Relations

Consider a very simple reccurence relation:

\[ T(n) := \begin{cases} 1 & n = 1 \\ n + T(n - 1), & n > 1 \end{cases} \]

With mathematical induction we can formally show that \(T(n)\) is quadratic. But there is a simpler & more intuitive way:

\[\begin{align*} T(n) &= n + T(n - 1) \tag{Def $T(\cdot)$} \\ &= n + n - 1 + T(n - 2) \\ &= \dots \tag{Repeat $n - 2$ times}\\ &= n + n - 1 + \dots + T(1) \\ &= n + n - 1 + \dots + 1 \tag{Def $T(1)$} \\ &= \frac{n(n + 1)}{2} \tag{Gauss}\\ &\in \mathcal{O}(n^2) \end{align*}\]

This method can be applied to the more complex divide-and-conquer reccurence relation from the lecture:

\[ R(n) := \begin{cases} a, &n = 1 \\ c\dot n + d\cdot R(\frac{n}{b}), &n > 1 \end{cases} \]

Applying the above method we expand \(R(\cdot)\) repetitively according to its definition until we reach the base case, rearranging terms when necessary:

\[\begin{align*} R(n) &= c\cdot n + d\cdot R(\frac{n}{b}) \tag{Def $R(\cdot)$} \\ &= c\cdot n + d\bigl(c\frac{n}{b} + d\cdot R(\frac{n}{b^2})\bigr) \\ &= c\cdot n + d\Bigl(c\frac{n}{b} + d\cdot \bigl(c\cdot \frac{n}{b^2} + d\cdot R(\frac{n}{b^2})\bigr)\Bigr) \\ &= c\cdot n + d\cdot c\frac{n}{b} + d^2c\frac{n}{b^2} + d^3\cdot R(\frac{n}{b^3}) \tag{Rearrange} \\ &= c\cdot n \left(1 + \frac{d}{b} + \frac{d^2}{b^2}\right) + d^3\cdot R(\frac{n}{b^3}) \\ &= \dots \tag{Repeat $k$-times} \\ &= c\cdot n\left(1 + \frac{d}{b} + \dots + \frac{d^{k - 1}}{b^{k - 1}}\right) + d^k \cdot R(\frac{n}{b^k}) \\ &= c\cdot n \sum_{i = 0}^{k - 1}\left(\frac{d}{b}\right)^i + d^k \cdot R(\frac{n}{b^k}) \\ &= c\cdot n \sum_{i = 0}^{k - 1}\left(\frac{d}{b}\right)^i + d^k \cdot R(1) \tag{Ass $\frac{n}{b^k} = 1$} \\ &= c\cdot n \sum_{i = 0}^{k - 1}\left(\frac{d}{b}\right)^i + a\cdot d^k \tag{Def $R(1)$} \end{align*}\]

See lecture slides for the complexity analysis of final expression.

1.2 Master Theorem

For reccurence relations of the form:

\[ T(n) := \begin{cases} a, &n = 1 \\ b\cdot n + c\cdot T(\frac{n}{d}), &n > 1 \end{cases} \]

Master theorem gives the solutions:

\[ T(n) = \begin{cases} \Theta(n), &c < d \\ \Theta(n\log(n)), &c = d \\ \Theta(n^{\log_b(d)}), &c > d \\ \end{cases} \]

Example: Merge Sort.

Complexity of merge sort satisfies the reccurence relation:

\[\begin{align*} &T(1) = 1 \\ &T(n) = \mathcal{O}(n) + 2\cdot T(\frac{n}{2}) \end{align*}\]

Thus with \(c = 2 = d\) the second case of MT applies: \(T(n) = \Theta(n\log n)\)

1.3 Amortized Analysis